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Abstract 
 
This paper presents a simulation technique for analyzing acoustic characteristics of piezoelectric underwater trans-

ducers. A finite element method is adopted for modeling piezoelectric coupled problems including material damping 
and fluid-structure interaction problems by taking system matrices in complex form. For the finite element modeling of 
unbounded acoustic fluid, infinite wave envelope element (IWEE) is adopted to take into account the infinite domain. 
An in-house finite element program is developed and technical issues for implementing the program are explained. 
Using the simulation program, acoustic characteristics of tonpilz transducer are analyzed in terms of modal analysis, 
radiated pressure distribution, pressure spectrum, transmitting-voltage response and impedance analysis along with 
experimental comparison. The developed simulation technique can be used for designing ultrasonic transducers in the 
areas of nondestructive evaluation, underwater acoustics and bioengineering. 
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1. Introduction 

Piezoelectric transducers are widely used to send 
and detect signals in many areas such as nondestruc-
tive evaluations, underwater acoustics, medical imag-
ing and in many other ultrasonic applications. Since 
transducer characteristics must be predictable in the 
design stage, the analysis of these transducers is essen-
tial in the design to predict the performance. In the 
analysis of piezoelectric underwater transducers, not 
only the coupled behavior of the piezoelectric, but also 
the interaction of unbounded media as well as material 
damping of the transducer should be taken into ac-
count to predict accurate responses of the transducer. 
Generally, material damping is considered to be a 
proportional damping to stiffness and mass matrices 

since this treatment is simple. However, proportional 
damping cannot properly take into account dielectric 
hysteresis of piezoelectric material. Thus, a more gen-
eral method is necessary for the damping treatment in 
transducer analysis program. 

To predict acoustic characteristics of piezoelectric 
transducers, numerical simulations are generally 
adopted [1-4]. For the sake of numerical simulation, 
the unbounded media needs to be truncated into a 
finite region near the transducer. However, at the trun-
cated boundary, an artificial reflection could happen 
due to the presence of resonance frequencies of the 
truncated finite model. Thus, it is essential to accom-
plish a transparent boundary around the truncated 
boundary to escape the artificial reflection. Many at-
tempts have been made to deal with this problem –
boundary element method, infinite element, absorbing 
boundary conditions (ABC), Dirichlet-Neumann (DtN) 
method, numerical treatments based on Excitation 
excitation theorem, and so on [5-9]. The selection of 
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unbounded domain treatment is important since nu-
merical simulation results can be deteriorated with 
irregular frequencies. Since most BEMs in wave prop-
agation problems have so-called irregular frequency, 
there have been several approaches to get rid of the 
irregular frequency – CONDOR (composite outward 
normal derivative overlap relation) method and 
CHIEF (combined Helmholtz integral equation formu-
lation)[10, 11]. However, these methods are restricted 
to relatively low frequencies since many resonance 
modes should be taken into account in a high fre-
quency region. Alternative treatments have been sug-
gested based on Sommerfeld radiation condition, for 
example, ABC, DtN, absorbing damper, filtering 
scheme and so on[5-8]. In dealing with the truncated 
finite region, finite element modeling is usually 
adopted because it can easily take into account mate-
rial anisotropy, material damping and geometric ir-
regularity [9]. To easily match up the finite element 
model in the truncated finite region, it is natural to use 
infinite element at the truncated boundary since infi-
nite element has the same interpolation behavior with 
the finite element. Conventional infinite element has a 
decaying tendency with the inverse of radial distance, 
which is suitable for static problems [12]. However, 
wave propagation problems like piezoelectric under-
water transducers, there is more likely a wave behav-
ior with decaying tendency. Infinite wave envelop 
element (IWEE) is suitable for wave propagation 
problems because it is an infinite element that has 
additional wave-like behavior [13].  

In this paper, finite element formulation is made for 
piezoelectric underwater transducers by taking into 
account piezoelectric coupled problems along with 
material damping, and fluid-structure interaction. 
IWEE and finite elements are used to model the finite 
region near a piezoelectric transducer. Material damp-
ing of piezoelectric material and elastic materials is 
taken into account by taking the system matrices in 
complex form. These complex system matrices can 
easily include material damping of piezoelectric mate-
rial as well as IWEE. However, a complex matrix 
solver is required. Derived formulations are imple-
mented into an in-house program, and a tonpilz trans-
ducer is taken as an example to verify the proposed 
method. We once reported the program development 
for a piezoelectric transducer in an earlier stage [14]. 
This paper includes the entire development of the pro-
gram, including formulation and comprehensive ex-
amples. Modal characteristics and acoustic character-

istics such as transmitting-voltage response (TVR), 
impedance analysis of transducers are calculated. 
 

2. Theory 

2.1 Modeling of piezoelectric underwater transducer 

A schematic diagram of a piezoelectric underwater 
transducer is shown in Fig. 1. The piezoelectric trans-
ducer can be represented by a combination of elastic 
material and active material. Finite fluid, various 
boundary conditions and working conditions are con-
sidered around the transducer, and an infinite fluid 
boundary is set for the outmost of it in order to make 
the working conditions closer to the real world. Thus, 
three distinct problems are involved from the fluid-
structure interaction, piezoelectric-structure coupled 
field and infinite fluid domain treatment. These three 
distinct problems are formulated separately. 

Piezoelectric material is the most used active mate-
rial in underwater transducers. Under the quasi-static 
assumption, the equations of motion for the coupled 
piezoelectric-structure system can be obtained by 
applying Hamilton’s variational principle to the pie-
zoelectric materials. After discretizing the variables, 
substituting elements matrices into global matrices, 
the finite element formulation of coupled piezoelec-
tric-structure system can be written as [15], 
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where U the nodal displacement vector, ΦE the elec-
trical potential vector. The first term represents the 
inertial term, the second term damping term and the 
third term stiffness term. The definitions of matrices 
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Fig. 1. Schematic diagram of piezoelectric underwater trans-
ducer. 
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Table 1. Matrices for fluid-structure interaction system. 
 

Matrix Description 

S
V

M ρ N NdV= ∫ T  The Mass Matrix of Structure 

V
C kN NdV= ∫ T  The Damping Matrix of Struc-

ture 

∫= V
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ture 
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f
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the Fluid where, 

c
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ρ

=  

γ  : Characteristic Impedance 
of the material at the boundary
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f

dBBH FF
T  

The Fluid Stiffness Matrix 
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I
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∫Γ Γ
∂
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=
I

d
n
p

Nf 0
2

T  The Force due to an Initial 
Wave Force Field 

 
presented in Eq. (1) are all described in Table 1. 

A variational principle and Galerkin’s method are 
used for finite element discretization. Since the finite 
element approximates shape functions for the spatial 
variation of the nodal values, pressure and displace-
ment variables can be written by shape functions and 
nodal values. Then, the wave equation accounting for 
losses at the interface boundary can be written in ma-
trix form as [16-18], 

 
0=+++ UQHPPAPE T &&&&& ρ   (2) 

 
where A is fluid damping matrix. The definitions of 
matrices mentioned in this section are listed in Table 
1. 

The complete finite element equations for the fluid-
structure interaction problem are written in assembled 
form as [19, 20], 
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This is a coupled structure-pressure equation. The 

second term represents the damping term. Note that 
this is an unsymmetric matrix equation, which con-
sumes a great deal of computational resources. An 
alternate formulation for the wave equation is in 

Table 2. Matrices for piezoelectric-structure coupled system. 
 

Matrix Description 
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terms of a velocity potential. One can consider veloc-
ity u as the gradient of a scalar potential φ. Following 
the same derivation as shown above, the finite ele-
ment formulation of the coupled fluid-structure sys-
tem based on velocity potential can be obtained as 
[19], 
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where Φ the velocity potential vector and dtfg t

202 ∫= . 

The velocity potential provides symmetry of equa-
tions of motion and computational efficiency. How-
ever, difficulties occur when applying boundary con-
ditions because velocity potential is not a physical 
quantity. The definitions of matrices mentioned in 
this section are listed in Table 2. 

 
2.2 Treatment of infinite fluid domain 

When an infinite fluid region is truncated into a fi-
nite region, a non-reflecting boundary condition 
should be provided on the truncated boundary to 
eliminate the artificial reflections arising at the boun-
dary. Since the infinite wave envelope element 
(IWEE) has additional wave behavior, the use of 
IWEE is more suitable than conventional infinite 
element for the acoustic analysis of underwater trans-
ducers [13, 21]. Thus, IWEE is used to deal with infi-
nite domain around the transducers. IWEE has three 
distinct characteristics: a mapping function that maps  
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Fig. 2. Schematic diagram of IWEE with finite element 
model. 
 
the real coordinate to an infinite domain, a shape 
function that has a decaying tendency and wave-like 
behavior, and a modified weighting function for Ga-
lerkin’s formulation. Fig. 2 represents the concept for 
infinite domain modeling by using finite element and 
IWEE. The finite element equation for IWEE is simi-
lar to that of conventional fluid elements except for 
some differences in shape function and weighting 
function. Detailed derivation can be found in the ref-
erence [13].  

The shape function of IWEE is a product of the 
shape functions in s and t coordinates,  
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The shape functions in t-coordinate are written with 

Lagrangian polynomials:  
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And, the shape functions in s-coordinate are:  
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Weighting function for IWEE uses its complex 

conjugate of the shape function to eliminate exponen-
tial terms in mass and stiffness matrices of IWEE, 
which results in reducing computation load. Thus, 

),()()()(),()(),(
* tsiknnn esStTtGtsNtGtsW µ+==

 (8) 
 

where geometric weighting factor, 
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Then, the stiffness, mass and force matrices of 
IWEE are 
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Above element matrices use a modified Galerkin’s 

method, which results in non-symmetric matrix and 
includes complex terms. 

 
2.3 Modal analysis 

When a harmonic excitation is given, the finite 
element Eq. (1) for the coupled piezoelectric-structure 
system becomes 
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The frequency ω represents the harmonic driving 

frequency. The mechanical forces are set to zero, and 
material damping is included in the stiffness matrix in 
complex form. Electrical potential variable has three 
parts: hot electrode, ground electrode and internal 
potential dof in the piezoelectric material. Once the 
internal potential dof are eliminated from the system 
equations by static condensation, then the system 
equations can be written as, 
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where Φ0 is the given electrical potential at the ‘hot’ 
electrode. Charge Q is replaced with I/jω, where I is 
the input current. Note that the potential and the di-
electric stiffness matrices are now scalar quantities. 
Here, the matrices with bars indicate the condensed 
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results.  
Eq. (14) gives a direct expression of the terminal 

admittance Y in terms of the various electro-elastic 
stiffness properties:  
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At resonance, Y →∞  so 0 0Φ →  for 0I ≠ . Thus, 
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where the determinant will give the eigenvalue ωi and 
corresponding eigenvector Ui of the i-th anti-
resonance mode [21]. The resonance mode corre-
sponds to an electrical short circuit condition, while 
the anti-resonance mode does to open circuit condi-
tion. 
 

3. Numerical results and discussion 

3.1 2-D modeling of tonpilz transducer 

Fig. 3(a) shows the finite element model of a typi-
cal tonpilz transducer that consists of two piezoelec-
tric ceramics sandwiched between head mass and tail 
mass, and tension bolt ensuring intimate mechanical 
contacts between components. The head mass is cir-
cular and gives the transducer a radiation face. PZT-4 
is used for the piezoelectric ceramics. Four-node qua-
drilateral axisymmetric elements are used to model 
the tonpilz transducer as shown in Fig. 3(b). Total 193 
linear elements and 240 nodes are used in the model. 
The two adjacent piezoelectric ceramics are assem-
bled to have opposite poling direction. The piezoelec-
tric stacks will both expand away from their common 
face or contract toward that face, depending on the 
polarity of the applied voltage. Symmetric boundary 
conditions along the radial direction are specified at 
the center line and at the outside of the head mass due  

Table 3. Material properties of the tonpilz transducer. 
 

 
Young’s 
modulus 

(GPa) 

Density 
(kg/m3) 

Poisson’s 
ratio 

Head mass 70.3 2770 0.33 
Tail mass 206.0 7955 0.30 

Bolt 185.0 7920 0.30 
Piezoceramic PZT-4 

 
 Head mass Piezoelectric ceramic 

(PZT-4) Tail mass

Bolt  
(a) Tonpilz transducer 

 

2

Ground electrode

Head mass 
Tail mass 

Tension bolt

PZT-4

Symmetric axis 

‘Hot’ electrode 

 
(b) Finite element model 

 
Fig. 3. Structure of tonpilz transducer and its 2-D axisymmet-
ric finite element model. 

 
to the repeated unit of tonpilz elements. The back side 
of the head mass is fixed along the axial direction. 
Three electrodes are placed on the three major sur-
faces of these ceramics for giving excitations or mak-
ing measurements. The material properties are listed 
in Table 3. 

Fig. 4 shows the 2-D axisymmetric finite element 
model of tonpilz transducer in water. Total 382 linear 
elements and 444 nodes are made in the model. The 
detailed structure of tonpilz transducer is the same as 
shown in Fig. 3. To model an infinite fluid, the fluid 
adjacent to the piezoelectric transducer is modeled by 
using conventional fluid element, and on the mathe-
matical boundary just outside of the finite fluid, 
IWEE is used as shown in Fig. 4. 

 
3.2 Finite element program 

The finite element formulation for piezoelectric un- 
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Fig. 4. 2-D axisymmetric finite element model of the tonpilz 
transducer in water. 

 
derwater transducers was implemented into an in-
house FORTRAN program. This program can sup-
port any combination of linear elements in terms of 
axisymmetric element, fluid element, piezoelectric 
element, IWEE in two- dimensions as well as three- 
dimensions. Complex system matrices are used to 
take into account the material damping in the piezo-
electric material as well as structural material. Mate-
rial damping in acoustic window material is important 
in predicting the acoustic performance of underwater 
transducers. To reduce computation time and memory 
space, the global system matrices are constructed into 
symmetrically banded form by arranging each node’s 
dof in a row [15]. To solve the global system matrix 
equation in harmonic analysis, several solvers are 
supported: skyline solver, half Gaussian elimination 
solver, LU decomposition solver. 

For the modal analysis, ARPACK solver is used 
[22]. As pre and post processors of the developed 
program, commercial pre and post processors such as 
ANSYS or Pro-Engineer can be used. 

 
3.3 Modal analysis of tonpilz transducer 

In the modal analysis of piezoelectric transducers,  

Table 4. Comparison of natural frequencies of the tonpilz 
transducer (Normalized with respect to the first resonance of 
ANSYS result). 
 

Mode Current  
program (Hz) 

ANSYS 
(Hz) Rel. Error (%)

1st (0.517, 0.000i) 0.512 1.0 

2nd (1.045, 0.000i) 1.000 4.45 

3rd (1.338, 0.000i) 1.321 1.3 

4th (1.629, 0.000i) 1.609 1.2 

5th (2.215, 0.000i) 2.123 4.4 

 
short and open circuit cases should be taken into ac-
count, which span the extremes of the piezoelectric 
coupling effect on the voltage and displacement. For 
the short circuit case that is commonly called ‘reso-
nance’ condition, a zero voltage is applied at the elec-
trodes, where all voltage potentials are connected in 
common. In the open circuit case that is called ‘anti-
resonance’, ground voltage is applied at the outer 
electrode of the ceramic stack; meanwhile no voltage 
is specified at the rest electrodes. Table 4 shows five 
natural frequencies for short circuited tonpilz trans-
ducer. These frequencies were normalized with re-
spect to the second resonance frequency (ANSYS 
result). Since the system matrices are complex, the 
natural frequencies are given in complex form. How-
ever, imaginary parts of the frequencies are so small 
compared with real parts. Imaginary part of the com-
plex natural frequencies represents decaying wave 
behavior on the transducer. Comparison is made with 
results obtained from the commercial package, 
ANSYS. Figure 5 shows these five mode shapes ob-
tained from the current program and ANSYS. The 
first and second modes are important for efficiently 
radiating and receiving signals. A comparison of nat-
ural frequencies and mode shapes shows good 
agreement between the current modeling method and 
the commercial package, ANSYS. 

 
3.4 Acoustic characteristic analysis of tonpilz trans-

ducer in water 

To find the acoustic characteristics of the trans-
ducer, a harmonic analysis was performed. The input 
for this simulation is unit voltage imposed across the 
‘hot’ electrodes of the transducer at the central elec-
trode. The input potential is 1 V at the central elec-
trode, while the first and third electrodes are set to 0 
V for ground. A harmonic analysis is performed over  
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(a) First mode 

 

 
(b) Second mode 

 

 
(c) Third mode 

 

 
(d) Fourth mode 

 

 
(e) Fifth mode 

 
Fig. 5. Comparison of mode shapes of the tonpilz transducer 
(short circuit). 
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Fig. 6. Pressure distribution in the water (a) and deformed 
shape of the tonpilz transducer (b). 
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Fig. 7. Pressure spectrum of the tonpilz transducer. 
 
a frequency range. At each frequency, the program 
computes the steady-state response of the transducer. 
Fig. 6(a) shows the pressure distribution in water, and 
(b) the deformed shape of the transducer at the first 
resonant frequency. Note that since ANSYS was used 
for the post processor, its name appeared. As the 
transducer vibrates, pressure waves propagate into the 
water uniformly. The pressure spectrum can be found 
at a specific point in the fluid. A point was selected in 
the fluid region, as shown in Fig. 4(a), which was on 
the acoustical axis of the tonpilz transducer. The pres-
sure was calculated at this point with a frequency 
sweep. 

Fig. 7 shows the pressure spectrum at the point. 
The first and second resonance peaks can be seen 
from the pressure spectrum. The transmitting-voltage 
response (TVR) of a transducer is the pressure pro-
duced at a point 1 meter far from the transducer in the 
direction of the axis of its beam pattern by a unit volt-
age into the transducer. From the pressure spectrum at 
the selected point on the acoustical axis, TVR was 
found in decibels relative to 1 micro Pascal as 1 Pa/V.  

Fig. 8 shows the TVR results. The simulated TVR 
was compared with an experimental result. The ex-
perimental test was performed in an underwater test-
ing facility in Korea. RF pulse was generated from an 
RF pulse generator and fed to a projector submerged 
in the underwater testing facility. Conventional pulse 
echo technique was used to test the transducer per-
formance. The measured TVR shows a broad peak 
near the second resonance while the simulated TVR 
peak is sharp near it. This is due to the fluid loading 
effect in the experiment, but the simulation result 
showed this effect to be small. 

It is well known that the input impedance of a pie-
zoelectric transducer represents the dynamic behavior  
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Fig. 8. TVR of the tonpilz transducer. 
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Fig. 9. Impedance of the tonpilz transducer. 

 
of the transducer very accurately. Thus, the imped-
ance of the tonpilz transducer is calculated. When a 
unit voltage is applied on the ‘hot’ electrode, the 
input electrical impedance can be written as 

/ 1/ 1/ iZ V I I j Qω= = = ∑ . 
Here, ω  is the operating frequency, j is 1−  and 

iQ∑  is the summed point charge at the electrode. The 
point charge Qi can be found from the second part of 
Eq. (14) by applying 1 volt on the ‘hot’ electrode. 
Impedance is a complex number and can be repre-
sented as, 

 
ϕjeZiXRZ =+=   (17)  

where Z impedance, R resistance, X reactance, Z  
the magnitude of impedance and the phase of im-
pedance. Fig. 9 shows the impedance of the tonpilz 
transducer. Comparison is made with an experimental 
result. The impedance measurement was made on the 
transducer in air by using an HP 4192A impedance 
analyzer. The amplitude of the impedance decreased 
and suddenly increased near the resonance and anti-
resonance frequencies. Peaks occurred near the corre-
sponding resonance frequency shown on the TVR. 

Note that the simulated peak is sharper than the ex-
perimental peak. This is due to under-estimation of 
fluid loading on the transducer from the simulation. 
Nevertheless, the simulation can predict the experi-
mental result. Thus, the proposed simulation tech-
nique is useful to predict the acoustic characteristics 
of tonpilz transducers. However, more efforts should 
be devoted in the program development to deal with 
large sized models for real applications and reducing 
computational burden. 
 

4. Conclusions 

A simulation technique of a piezoelectric underwa-
ter transducer was presented by taking into account 
wave radiation. Finite element formulation was de-
rived for the coupling of piezoelectric and elastic 
materials as well as fluid-structure interaction.  

IWEE was introduced at the truncated boundary to 
deal with the infinite domain of the fluid. The tonpilz 
transducer was taken as a numerical example, and 
two-dimensional finite element modeling was per-
formed. Modal and harmonic analysis were con-
ducted to validate the simulation technique. Compari-
son of natural frequencies and mode shapes with the 
results of a commercial finite element program 
showed a good correlation. To demonstrate the simu-
lation capabilities for acoustic characteristics of pie-
zoelectric transducers, radiated pressure distribution 
in water was found, and the pressure spectrum was 
calculated. From the pressure calculation, a TVR was 
simulated and the simulated peak was sharper than 
the experimental peak. For further verification, the 
input impedance of the transducer was simulated. The 
developed simulation technique can be used for de-
signing ultrasonic transducers in the areas of nonde-
structive evaluation, underwater acoustics and bioen-
gineering. 
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